Cómo resolver para [matemáticas] x [/ matemáticas]: [matemáticas] 8 \ sin x \ cos 2x \ sin 3x \ cos 4x = \ cos 6x

* A2A: –

[matemáticas] \ implica 8 \ sen x \ cos2x \ sin3x \ cos4x = \ cos6x [/ matemáticas]

[math] \ star [/ math] Multiplica ambos lados por [math] \ cos x [/ math] para obtener: –

[matemáticas] \ implica 4 \ left (2 \ sin x \ cos x \ right) \ cos2x \ sin3x \ cos4x = \ cos6x \ cos x \ quad \ left [\ porque 2 \ sin \ theta \ cos \ theta = \ sin2 \ theta \ right] [/ math]

[matemáticas] \ implica 2 \ left (2 \ sin2x \ cos2x \ right) \ sin3x \ cos4x = \ dfrac {1} {2} \ left (\ cos7x + \ cos5x \ right) \ quad \ left \ {\ porque \ cos \ theta \ cos \ phi = \ dfrac {1} {2} \ left [\ cos \ left (\ theta + \ phi \ right) + \ cos \ left (\ theta- \ phi \ right) \ right] \ right \ }[/matemáticas]

[matemática] \ implica \ left (2 \ sin4x \ cos4x \ right) \ sin3x = \ dfrac {1} {2} \ left (\ cos7x + \ cos5x \ right) [/ math]

[matemáticas] \ implica \ sin8x \ sin3x = \ dfrac {1} {2} \ left (\ cos7x + \ cos5x \ right) [/ math]

[matemáticas] \ implica \ dfrac {1} {2} \ left (\ cos5x- \ cos11x \ right) = \ dfrac {1} {2} \ left (\ cos7x + \ cos5x \ right) \ quad \ left \ {\ porque \ sin \ theta \ sin \ phi = \ dfrac {1} {2} \ left [\ cos \ left (\ theta- \ phi \ right) – \ cos \ left (\ theta + \ phi \ right) \ right] \ right \} [/ math]

[matemáticas] \ implica \ cos11x + \ cos7x = 0 [/ matemáticas]

[matemáticas] \ implica 2 \ cos9x \ cos2x = 0 \ quad \ left [\ porque \ cos \ theta + \ cos \ phi = 2 \ cos \ left (\ dfrac {\ theta + \ phi} {2} \ right) \ cos \ left (\ dfrac {\ theta- \ phi} {2} \ right) \ right] [/ math]

[matemáticas] \ implica \ begin {array} {c | c} \ cos9x = 0 & \ cos2x = 0 \\ 9x = \ left (2n + 1 \ right) \ dfrac {\ pi} {2} & 2x = \ left ( 2n + 1 \ right) \ dfrac {\ pi} {2} \\\ boxed {x = \ left (2n + 1 \ right) \ dfrac {\ pi} {18}} & \ boxed {x = \ left ( 2n + 1 \ right) \ dfrac {\ pi} {4}} \ end {array} [/ math]

[matemáticas] \ estrella [/ matemáticas] La respuesta final será la unión de ambos conjuntos: –

[matemáticas] \ implica \ boxed {x \ in \ left \ {\ left (2n + 1 \ right) \ dfrac {\ pi} {18} \ right \} \ cup \ left \ {\ left (2n + 1 \ right) \ dfrac {\ pi} {4} \ right \}} [/ math]

[matemáticas] \ estrella \, \, \, n \ in \ mathbb {Z} [/ matemáticas]


[math] \ star [/ math] Todas las obras de [math] \ LaTeX [/ math] utilizadas aquí son creaciones robadas de Latex God.