No tienes que hacerlo Y normalmente es un poco tonto porque cada uno de los cubos en un histograma tendrá una etiqueta. Más a menudo, el eje Y se rompe para comprimir un gráfico que es una combinación de barras altas y cortas.
Pero … supongamos que sus datos se ven así:
0–9: 3
10-19: 5
- ¿Cuáles son ejemplos de ecuaciones de álgebra dura?
- ¿Cuál será el ángulo entre el vector ayb si hay un conjunto de tres vectores a, b, c tal que a + b + c = 0 y una magnitud de a = 3 b = 5 y c = 7?
- Cómo demostrar que [matemáticas] \ displaystyle \ left (\ frac {1+ \ sqrt {-3}} 2 \ right) ^ 9 + \ left (\ frac {1- \ sqrt {-3}} 2 \ right) ^ 9 = -2 [/ matemáticas]
- Cómo encontrar [math] \ log {37.588} [/ math]
- ¿Cuál es la aproximación para [math] \ log {x!} [/ Math]?
20–29: 13
30-39: 7
40-49: 2
50–59: 0
60-69: 0
70-79: 0
80-89: 0
90–99: 6
Ahora tiene un gráfico que tiene mucho espacio en blanco debido a todos esos cubos cero en el medio. Pero si solo omitimos los cubos por completo y tramamos
…
40-49: 2
90–99: 6
entonces el gráfico es potencialmente engañoso ya que las personas pueden no notar fácilmente que el patrón regular de etiquetas se ha roto. Romper el eje X logra ambos objetivos: elimina el espacio perdido, al tiempo que proporciona una señal visual de que faltan algunos cubos que “deberían estar allí”.