Ver A216066 – OEIS y A003558 – OEIS para algunas referencias. Esto va de una pregunta de teoría de grupo a una pregunta de teoría de números. Tomé (básicamente lo mismo) permutaciones, en notación de dos líneas,
[matemáticas] \ begin {pmatrix} 1 & 2 & 3 & \ ldots & n-2 & n-1 & n \\\ 1 & n & 2 & \ ldots & \ lceil \ frac {n} {2} \ rceil-1 & \ lceil \ frac {n} {2} \ rceil + 1 & \ lceil \ frac {n} {2} \ rceil \ end {pmatrix} [/ math]
y escribió una línea de Mathematica para determinar el orden (como elemento de grupo):
ord [n_Integer? Positivo]: [correo electrónico protegido] @Riffle [Rango [1, Techo [n / 2]], [correo electrónico protegido] [1 + Techo [n / 2], n]]
que da la lista:
ord / @ Rango [25] {1, 1, 2, 3, 3, 5, 6, 4, 4, 9, 6, 11, 10, 9, 14, 5, 5, 12, 18, 12, 10, 7, 12, 23, 21 }
La búsqueda en OEIS produce esas dos secuencias anteriores, que son básicamente las mismas.
Ahora las referencias OEIS muestran que el enésimo elemento en esta secuencia es el m más pequeño de tal manera que
[matemáticas] 2 ^ m \ equiv \ pm 1 (\! \! \! \! \! \ mod 2n + 1). [/matemáticas]
Esto se llama el suborden multiplicativo de 2 (mod 2n + 1).
- ¿Cuál es una explicación intuitiva para la ley de grupo para la adición de curvas elípticas?
- ¿Dónde está el 29% restante de todos los enteros positivos?
- ¿Por qué los matemáticos creían que el último teorema de Fermat era cierto cuando no había pruebas disponibles? Si Fermat no tenía pruebas, ¿cómo tuvo la idea de establecer un teorema que fuera realmente cierto y probado después de 300 años?
- Cómo generar toda la secuencia en este problema matemático
- ¿Alguien ha intentado crear matemáticas donde el conjunto de enteros es el doble de grande que el conjunto de enteros pares?
Un límite débil en esto proviene de la función totient de Euler (o la función Carmichael muy estrechamente relacionada), que coloca el límite m <2n-1. Este límite debe reducirse en un factor de 2 a su límite. El OEIS señala que el enésimo elemento de esta secuencia siempre divide la función Carmichael de (2n-1), que puede ayudar a colocar un límite, pero no sé cómo. A veces, la mejora sobre el límite de la función Carmichael es bastante grande: a (4096) = 13, mientras que λ (2 * 4096-1) = 8190 = 13 * 630.
Trazado de los primeros 3000 términos en la secuencia:
De todos modos, ¡tendrás que encontrar un teórico de números para ayudar a mejorar el límite!