De acuerdo, esto no es tan fácil de descifrar.
[matemáticas] \ begin {align} I & = \ int \ ln (\ tan x) \ mathrm dx \\\ hline & \ text {Let} u = \ tan x \ implica \ mathrm du = \ sec ^ 2x \, \ mathrm dx \\ & \ qquad \ qquad \ qquad \ implica \ mathrm dx = \ dfrac {\ mathrm du} {\ sec ^ 2x} \\ & \ qquad \ qquad \ qquad \ implica \ mathrm dx = \ dfrac {\ mathrm du } {1 + u ^ 2} \\\ hline I & = \ int \ dfrac {\ ln u} {u ^ 2 + 1} \ mathrm du \\ & = \ int \ dfrac {\ ln u} {(u + i) (ui)} \ mathrm du \\ & = \ dfrac12 \ int \ left \ {\ dfrac {i \ ln u} {u + i} – \ dfrac {i \ ln u} {ui} \ right \} \ mathrm du \\ & = \ dfrac12 (I_1 + I_2) \\\ hline \ end {align} \ tag * {} [/ math]
[matemáticas] \ begin {align} I_1 & = \ int \ dfrac {i \ ln u} {u + i} \ mathrm du \\ & \ text {Let} v = u + i \ implica \ mathrm dv = \ mathrm du \\ & = \ int \ dfrac {i \ ln (vi)} {v} \ mathrm dv \\ & = \ int \ dfrac {i \ ln \ left \ {- i (1 + iv) \ right \}} {v} \ mathrm dv \\ & = \ int \ dfrac {i \ ln (-i)} v + \ dfrac {\ ln (1 + iv)} {v} \ mathrm dv \\ & = i \ ln (- i) \ ln v + \ int \ dfrac {\ ln (1 + iv)} v \ mathrm dv \\ & \ text {Let} w = -iv \ implica \ mathrm dw = -i \, \ mathrm dv \\ & = i \ ln (-i) \ ln v + \ int \ dfrac {-i \ ln (1 + vi)} {- iv} \ mathrm dv \\ & = i \ ln (-i) \ ln v + \ int \ dfrac {\ ln (1-w)} {w} \ mathrm dw \\ & = i \ ln (-i) \ ln v- \ mathrm {Li} _2 (w) \\ & = i \ ln (-i ) \ ln (u + i) – \ mathrm {Li} _2 (-iv) \\ & = i \ ln (-i) \ ln (u + i) – \ mathrm {Li} _2 (-i (u + i)) \\ & = i \ ln (-i) \ ln (u + i) – \ mathrm {Li} _2 (1-iu) \\ & = \ boxed {i \ ln (-i) \ ln ( \ tan x + i) – \ mathrm {Li} _2 (1-i \ tan x)} \ end {align} \ tag * {} [/ math]
[matemáticas] \ begin {align} I_2 & = \ int- \ dfrac {i \ ln u} {ui} \ mathrm du \\ & \ text {Let} v = ui \ implica \ mathrm dv = \ mathrm du \\ & = -i \ int \ dfrac {\ ln (v + i)} v \ mathrm dv \\ & = – i \ int \ dfrac {\ ln (i (1-iv))} v \ mathrm dv \\ & = -i \ int \ dfrac {\ ln (i)} v + \ dfrac {\ ln (1-iv)} v \ mathrm dv \\ & = – i \ ln i \ ln v- \ int \ dfrac {i \ ln (1-iv)} {v} \ mathrm dv \\ & \ text {Let} w = iv \ implica \ mathrm dw = i \, \ mathrm dv \\ & = – i \ ln i \ ln vi \ int \ dfrac {\ ln (1-w)} {w} \ mathrm dw \\ & = – i \ ln i \ ln v + i \ mathrm {Li} _2 (w) \\ & = – i \ ln i \ ln v + i \ mathrm {Li} _2 (iv) \\ & = – i \ ln i \ ln (ui) + i \ mathrm {Li} _2 (i (ui)) \\ & = – i \ ln i \ ln (ui) + i \ mathrm {Li} _2 (1 + iu) \\ & = \ boxed {-i \ ln i \ ln (\ tan xi) + i \ mathrm {Li} _2 (1 + i \ tan x)} \ end {align} \ tag * {} [/ math]
- ¿Debería especializarme en finanzas si no soy bueno en álgebra?
- ¿Cuál es la forma cerrada de [matemáticas] \ {a_n \}, [/ matemáticas] si [matemáticas] a_0 + 1 = a_1 = 1 [/ matemáticas] y [matemáticas] a_ {n + 1} = a_n + {n} a_ {n-1} [/ matemáticas]?
- Cómo resolver para x en 8x ^ 3 – 6x + 1 = 0
- Cómo probar [math] \ prod_ {t = 1} ^ {m} (1 + e ^ {\ frac {i2 \ pi at} {m}}) = 2 ^ {gcd (a, m)} [/ math ] para entero impar [matemáticas] m
- ¿Es el número de números irracionales más que el número de números racionales?
Finalmente
[matemáticas] \ begin {align} I_1 + I_2 & = \ boxed {\ dfrac12i \ ln (-i) \ ln (\ tan x + i) – \ dfrac12 \ mathrm {Li} _2 (1-i \ tan x) – \ dfrac12i \ ln i \ ln (\ tan xi) + \ dfrac12i \ mathrm {Li} _2 (1 + i \ tan x) + C} \ end {align} [/ math]
- [matemática] \ require {action} \ toggle {\ bbox [#FAF, 5px] {\ text {Partial Fraction Result}}} {\ begin {align} \ text {Supongamos que} \\ & \ dfrac {\ ln u } {(u + i) (ui)} = \ dfrac {A \ ln u} {u + i} + \ dfrac {B \ ln u} {ui} \\ & \ implica A \ ln u (ui) + B \ ln u (u + i) = \ ln u \\ & \ implica A (ui) + B (u + i) = 1 \\ & \ implica (A + B) u + (BA) i = 1 \\ & \ text {Comparando coeficientes …} \\ & \ qquad \ qquad \ begin {cases} A + B = 0 \\ (BA) i = 1 \ implica BA = \ dfrac 1i = -i \ end {cases} \\ & \ text {Resolver el sistema da …} \\ & \ qquad \ qquad A = \ dfrac i2, B = – \ dfrac i2 \\ & \ dfrac {\ ln u} {(u + i) (ui)} = \ dfrac i2 \ left \ {\ dfrac {\ ln u} {(u + i)} – \ dfrac {\ ln u} {ui} \ right \} \ end {align}} \ endtoggle \ tag * {} [ /matemáticas]
- [matemáticas] \ require {action} \ toggle {\ bbox [#ABF, 5px] {\ text {Función de Spence}}} {\ begin {align} \ mathrm {Li} _2 (w) = – \ int \ dfrac { \ ln (1-w)} {w} \ end {align}} \ endtoggle \ tag * {} [/ math]