¿Cómo debo calcular la suma de las series infinitas dadas (ver detalles)?

Dado: [matemáticas] \ begin {align} S _ {\ infty} & = \ frac {1} {2} \ left (\ frac {1} {3} + \ frac {1} {4} \ right) – \ frac {1} {4} \ left (\ frac {1} {3 ^ {2}} + \ frac {1} {4 ^ {2}} \ right) + \ frac {1} {6} \ left ( \ frac {1} {3 ^ {3}} + \ frac {1} {4 ^ {3}} \ right) – \ ldots \\ & = \ frac {1} {2} \ left [\ frac {1 } {3} – \ frac {1} {2} \ left (\ frac {1} {3 ^ {2}} \ right) + \ frac {1} {3} \ left (\ frac {1} {3 ^ {3}} \ right) – \ ldots \ right] + \ frac {1} {2} \ left [\ frac {1} {4} – \ frac {1} {2} \ left (\ frac {1 } {4 ^ {2}} \ right) + \ frac {1} {3} \ left (\ frac {1} {4 ^ {3}} \ right) – \ ldots \ right] \\ & = \ frac {1} {2} \ left [\ log \ left (1+ \ frac {1} {3} \ right) \ right] + \ frac {1} {2} \ left [\ log \ left (1+ \ frac {1} {4} \ right) \ right] \\ & = \ frac {1} {2} \ left [\ log \ left (\ frac {4} {3} \ right) \ times \ left (\ frac {5} {4} \ right) \ right] \\ & = \ frac {1} {2} \ log \ left (\ frac {5} {3} \ right) \ end {align} [/ math]

[matemáticas] \ left [\ textrm {as} \, \, \ log_e (1 + x) = x- \ dfrac {x ^ {2}} {2} + \ dfrac {x ^ {3}} {3} – \ dfrac {x ^ {4}} {4} + \ ldots \ right] \ text {for} x \ in (-1,1] [/ math]

Shukriya 🙂