La definición de una tapa está inspirada en la de un Arco, un conjunto de puntos en el plano proyectivo finito (o afín), ninguno de los cuales son colineales. Los ejemplos clásicos de arcos en planos proyectivos son las cónicas, que generalmente se dibujan como una “tapa”. Ese podría ser el razonamiento detrás de esto. El artículo más antiguo que utiliza el término topes que he podido localizar es el de Raymond Hill “Sobre el tamaño más grande de tope en S5,3 Rend. Accad. Naz. Lincei, 54 (8) (1973), págs. 378– 384 “. También vea esto: Gorras y códigos.
Editar: Aquí hay una referencia aún más antigua, Sobre las geometrías de Galois por Segre (1958)
Agregado más tarde :
Aquí hay un comentario en otra publicación de blog sobre cap-set que habla sobre los orígenes de la terminología. Más sobre el problema del conjunto de tapas
- ¿Qué es una forma modular?
- ¿Cómo puedo calcular el tamaño de un objeto en una foto aérea a partir de la altitud y la distancia focal de la lente?
- ¿Cómo calculo la vista de la lente gran angular?
- Geometría: ¿Cuál es la mejor manera de visualizar dimensiones más altas?
- ¿Cuánto de un planeta esférico se puede ver a la vez?
Felipe Voloch dice: 28 de enero de 2011 a las 7:49 am | Respuesta
Un comentario para seguir el de Jordan. Primero, un conjunto en F ^ 3 sin tres puntos colineales se llama cap porque parece un cap (= sombrero como cosa). Un cuadrático elíptico (es decir, un cuadrático cuya regla solo se define en una extensión cuadrática) es un límite con q ^ 2 + 1 puntos (donde q = \ # F). Más sorprendente es el siguiente teorema de B. Segre, si q es impar, entonces un límite en F ^ 3 cuya cardinalidad es al menos q ^ 2 -cq (donde c es alguna constante que no recuerdo) está contenido en un cuadrático elíptico