Una superficie gaussiana encierra un dipolo eléctrico dentro de ella. ¿Cuál es el flujo total a través de la esfera?

La ley de Gauss es un ejemplo perfecto para el teorema que define cosas microscópicas en el dominio clásico. Podemos usarlo para encontrar el campo eléctrico cuando existe una simetría apropiada, pero no es aplicable en su caso.

En el caso de dipolo , hay una carga + q y -q que cuando está encerrada en una superficie gaussiana le dará a la carga neta cero, por lo que el flujo también es cero. Además, el dipolo no tiene la simetría esférica como una carga puntual o un cilindro como en el caso de la carga lineal.

Para abordar el uso de la simetría, puede usar la ecuación de Poisson.

Para el dipolo físico, puede tomarlo como una superposición de carga negativa y positiva .

Para un dipolo de punto teórico, solo necesita tomar el límite ya que el tamaño va a cero mientras el momento dipolar (p) se mantiene constante. También necesitamos establecer condiciones de contorno y encontrar el flujo.

Pero el teorema de Gauss no le daría una respuesta satisfactoria ya que el dipolo no cumple las condiciones del teorema de Gauss.

Según la ley de Gauss, el flujo neto es cero, ya que la carga neta en el interior es cero. Esto queda claro por el hecho de que, como saben, todas las líneas de campo que se originan en la parte positiva del dipolo terminan en la parte negativa del dipolo, por lo que el número de líneas que salen y entran en la superficie es el mismo.

Nota: hice trampa un poco allí. Todas las líneas de la carga positiva terminan en la carga negativa SOLO si el dipolo es un sistema aislado. Si hay otras cargas cercanas, en verdad, algunas de las líneas de la carga positiva terminarán fuera de la esfera. Entonces, ¿cómo sigue siendo válida la ley de Gauss? Esto se compensará con la reorganización de otras líneas de campo. Ayuda a mirar los diagramas de línea de campo generados por computadora para ayudar a comprender cómo funciona esta compensación.

Un dipolo eléctrico consta de dos cargas q y -q separadas por una distancia (generalmente escrita como) 2d.

El flujo eléctrico a través de una superficie cerrada o gaussiana está determinado por la carga neta dentro de la superficie. Si la superficie encierra un dipolo, el flujo eléctrico a través de la superficie será cero, ya que la carga neta es cero.

(La forma de la superficie, esférica o de otro tipo, no cambia la magnitud del flujo eléctrico, siempre que encierre las cargas).

flujo eléctrico = [carga incluida / E0]. En cuanto a un dipolo eléctrico, la carga incluida es cero. Por lo tanto, el flujo dentro de este será cero. Un dipolo eléctrico es una separación de cargas positivas y negativas. [ya que la carga total es cero]

El flujo total será cero. El flujo debido a la carga positiva será cancelado exactamente por el flujo debido a la carga negativa.