¿Cómo se usa la fórmula cuadrática en nuestra vida diaria?

La distancia de frenado para un automóvil o cualquier vehículo se puede modelar mediante una ecuación cuadrática. La distancia de frenado se compone de la distancia recorrida durante el tiempo de reacción. Luego, una vez que se aplican los frenos, la distancia recorrida durante el período de desaceleración. En el modelo general

ax ^ 2 + bx + c = 0

El componente bx se relaciona con la distancia de pensamiento, que es lineal. El componente ax ^ 2 no es lineal, porque si la velocidad se duplica de v a 2v, la distancia de frenado se cuadruplica.

Si visita el sitio web http://passmytheory.co.uk/learni… distancia, verá varias distancias de pensamiento y frenado que ofrecen distancias de frenado generales. El modelado de estas cifras de sitios proporciona la siguiente cuadrática, que generará distancias de frenado totales para cualquier velocidad normal de un automóvil:

x ^ 2/20 + x – c = 0

donde x es la velocidad del automóvil en mph yc es la distancia de frenado general.

Supongamos que conocemos la distancia de frenado como 75 pies (= c), encontramos la velocidad (x mph) a la que viajaba el vehículo. Por lo tanto, el modelo es

x ^ 2/20 + x – 75 = 0

Haga el cálculo> x ^ 2 + 20x -1500 = 0 usando la fórmula e ignore el resultado negativo. Esto produce que x = 30 (mph)

Alternativamente, puede tener la velocidad del automóvil (digamos que es 20 mph, entonces x = 20) y requerir la distancia de frenado (= c) y entonces la fórmula se convierte en:

x ^ 2/20 + x = c => 20 ^ 2/20 + 20 = 40 (pies)

Espero que este sea un ejemplo útil para entender el modelado matemático.

El uso principal de la fórmula cuadrática es resolver problemas de palabras. Aquí hay uno ahora:

Una pata de un triángulo rectángulo excede la otra pata en cuatro pulgadas. La hipotenusa es de 20 pulgadas. Encuentra la longitud de la pata más corta del triángulo rectángulo.

Esto está tomado de un sitio web de práctica de Regents (Practica con ecuaciones cuadráticas) y puede resolverse factorizando. Sin embargo, ajustar un poco las variables hace que sea imposible resolverlas factorizando, y debe usar la Fórmula, completar el cuadrado o usar un enfoque no algebraico.