Aquí vamos:
[matemáticas] \ displaystyle \ int _ {\ frac {\ pi} {4}} ^ {\ frac {3 \ pi} {4}} \ frac {\ sin \ left (x \ right)} {\ sin \ left (x \ right) +1} \ mathrm {d} x [/ math]
Primero calculamos la integral indefinida.
[matemáticas] {\ displaystyle \ int} \ dfrac {\ sin \ left (x \ right)} {\ sin \ left (x \ right) +1} \, \ mathrm {d} x [/ math]
Escriba [math] \ sin \ left (x \ right) [/ math] como [math] \ sin \ left (x \ right) +1+ \ left (1 \ right) [/ math] y divida: [math] = {\ displaystyle \ int} \ left (1- \ dfrac {1} {\ sin \ left (x \ right) +1} \ right) \ mathrm {d} x \ Rightarrow {\ displaystyle \ int} 1 \, \ mathrm {d} x – {\ displaystyle \ int} \ dfrac {1} {\ sin \ left (x \ right) +1} \, \ mathrm {d} x [/ math]
Ahora resolviendo: [matemáticas] {\ displaystyle \ int} \ dfrac {1} {\ sin \ left (x \ right) +1} \, \ mathrm {d} x [/ math]
Reescribe usando identidades trigonométricas / hiperbólicas: = [matemáticas] {\ displaystyle \ int} \ dfrac {\ sec ^ 2 \ left (\ frac {x} {2} \ right)} {\ left (\ tan \ left (\ frac {x} {2} \ right) +1 \ right) ^ 2} \, \ mathrm {d} x [/ math]
Sustituya [matemática] u = \ tan \ left (\ dfrac {x} {2} \ right) +1 \ longrightarrow \ mathrm {d} x = \ dfrac {2} {\ sec ^ 2 \ left (\ frac {x } {2} \ right)} \, \ mathrm {d} u: = \ class {steps-node} {\ cssId {steps-node-3} {2}} {\ displaystyle \ int} \ dfrac {1} {u ^ 2} \, \ mathrm {d} u [/ math]
Resolvamos ahora para: [math] {\ displaystyle \ int} \ dfrac {1} {u ^ 2} \, \ mathrm {d} u [/ math]
Aplique la regla de poder: [math] {\ displaystyle \ int} u ^ {\ mathtt {n}} \, \ mathrm {d} u = \ dfrac {u ^ {\ mathtt {n} +1}} {\ mathtt {n} +1} con \ mathtt {n} = – 2: = – \ dfrac {1} {u} [/ math]
Entonces [math] \ class {steps-node} {\ cssId {steps-node-4} {2}} {\ displaystyle \ int} \ dfrac {1} {u ^ 2} \, \ mathrm {d} u = – \ dfrac {2} {u} [/ matemáticas]
Deshacer la sustitución [matemáticas] u = \ tan \ left (\ dfrac {x} {2} \ right) +1: = – \ dfrac {2} {\ tan \ left (\ frac {x} {2} \ right) +1} [/ matemáticas]
Ahora desde [math] {\ displaystyle \ int} 1 \, \ mathrm {d} x = x [/ math] aplicando la regla constante,
[matemáticas] {\ displaystyle \ int} 1 \, \ mathrm {d} x – {\ displaystyle \ int} \ dfrac {1} {\ sin \ left (x \ right) +1} \, \ mathrm {d} x = x + \ dfrac {2} {\ tan \ left (\ frac {x} {2} \ right) +1} [/ math]
Agregar la constante: [matemáticas] {\ displaystyle \ int} \ dfrac {\ sin \ left (x \ right)} {\ sin \ left (x \ right) +1} \, \ mathrm {d} x = \ dfrac {2} {\ tan \ left (\ frac {x} {2} \ right) +1} + x + C [/ math]
Ahora, calculemos los límites.
[matemáticas] \ displaystyle \ int _ {\ frac {\ pi} {4}} ^ {\ frac {3 \ pi} {4}} \ frac {\ sin \ left (x \ right)} {\ sin \ left (x \ right) +1} \ mathrm {d} x [/ math]
Dado que [matemáticas] \ displaystyle \ int _a ^ bf \ left (x \ right) dx = F \ left (b \ right) -F \ left (a \ right) = \ lim _ {x \ to \: b-} \ left (F \ left (x \ right) \ right) – \ lim _ {x \ to \: a +} \ left (F \ left (x \ right) \ right) [/ math],
[matemáticas] \ displaystyle \ lim _ {x \ to \ frac {\ pi} {4} +} \ left (\ frac {2} {\ tan \ left (\ frac {x} {2} \ right) +1 } + x \ derecha) [/ matemáticas]
Ingrese el valor de [math] x = \ dfrac {\ pi} {4}: \ displaystyle = \ frac {2} {\ tan \ left (\ frac {\ frac {\ pi} {4}} {2} \ right) +1} + \ frac {\ pi} {4} [/ math]
Simplificando, obtenemos [math] = \ sqrt {2} + \ frac {\ pi} {4} [/ math]
[matemáticas] \ displaystyle \ lim _ {x \ to \ frac {3 \ pi} {4} -} \ left (\ frac {2} {\ tan \ left (\ frac {x} {2} \ right) + 1} + x \ derecha) [/ matemáticas]
Ingrese el valor de [math] x = \ dfrac {3 \ pi} {4}: \ displaystyle = \ frac {2} {\ tan \ left (\ frac {\ frac {3 \ pi} {4}} { 2} \ right) +1} + \ frac {3 \ pi} {4} [/ math]
Simplificando, obtenemos [matemáticas] = 2- \ sqrt {2} + \ frac {3 \ pi} {4} [/ matemáticas]
Ahora tenemos [math] = 2- \ sqrt {2} + \ frac {3 \ pi} {4} – \ left (\ sqrt {2} + \ frac {\ pi} {4} \ right) [/ math ]
Simplificando aún más, la respuesta final es [matemáticas] \ boxed {\ frac {1} {2} \ left (4-4 \ sqrt {2} + \ pi \ right)} [/ math]