* A2A: –
[matemáticas] \ implica \ displaystyle \ lim_ {x \ to0} \ dfrac {\ cos2x- \ cos3x} {x ^ 2} [/ matemáticas]
[matemática] \ star \ text {Utilizando:} \ cos \ theta- \ cos \ phi = 2 \ sin \ left (\ dfrac {\ theta + \ phi} {2} \ right) \ sin \ left (\ dfrac {\ phi- \ theta} {2} \ right) [/ math]
[matemáticas] \ implica \ displaystyle \ lim_ {x \ to0} \ dfrac {2 \ sin \ left (\ dfrac {5x} {2} \ right) \ sin \ left (\ dfrac {x} {2} \ right) } {x ^ 2} [/ matemáticas]
- Cómo encontrar la suma de (n ^ 2) * (v ^ n) de n = 0 a 10, donde v = 1.06 ^ -1, sin escribirlo todo en la calculadora
- ¿Qué es [math] \ infty ^ 2 [/ math]?
- ¿Cuál es la expansión de Taylor de un semicírculo?
- ¿Por qué es 0 ^ 0 = 1?
- ¿Cómo integraría [math] \ displaystyle \ int_ {0} ^ {1} \ dfrac {\ log (1-x) (\ log (1 + x)) ^ 2} {x} \, dx [/ math] ?
[matemáticas] \ implica \ dfrac {5} {2} \ displaystyle \ lim_ {x \ to0} \ dfrac {\ sin \ left (\ dfrac {5x} {2} \ right)} {\ left (\ dfrac {5x } {2} \ right)} \ times \ dfrac {\ sin \ left (\ dfrac {x} {2} \ right)} {\ left (\ dfrac {x} {2} \ right)} = \ boxed { \ boxed {\ dfrac {5} {2}}} \ quad \ left [\ porque \ displaystyle \ lim _ {\ theta \ to0} \ dfrac {\ sin \ theta} {\ theta} = 1 \ right] [/ math ]
Aquí hay otro enfoque agregado por Awnon Bhowmik 🙂
[matemáticas] \ begin {align} L & = \ lim_ \ limits {x \ to0} \ dfrac {\ cos 2x- \ cos 3x} {x ^ 2} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {\ sqrt {1- \ sin ^ 22x} – \ sqrt {1- \ sin ^ 2 3x}} {x ^ 2} \ qquad [\ porque \ sin ^ 2x + \ cos ^ 2x = 1] \\ & = \ lim_ \ limits {x \ to0} \ dfrac {\ sqrt {1- (2x) ^ 2} – \ sqrt {1- (3x) ^ 2}} {x ^ 2} \ qquad [\ porque \ text {For} x \ approx0, \ sin x \ approx \ tan x \ approx x] \\ & = \ lim_ \ limits {x \ to0} \ dfrac {\ sqrt {1-4x ^ 2} – \ sqrt {1-9x ^ 2 }} {x ^ 2} \ cdot \ dfrac {\ sqrt {1-4x ^ 2} + \ sqrt {1-9x ^ 2}} {\ sqrt {1-4x ^ 2} + \ sqrt {1-9x ^ 2}} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {(1-4x ^ 2) – (1-9x ^ 2)} {x ^ 2 \ left (\ sqrt {1-4x ^ 2 } + \ sqrt {1-9x ^ 2} \ right)} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {5x ^ 2} {x ^ 2 \ left (\ sqrt {1-4x ^ 2 } + \ sqrt {1-9x ^ 2} \ right)} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {5} {\ sqrt {1-4x ^ 2} + \ sqrt {1-9x ^ 2}} \\ & = \ boxed {\ dfrac52} \ end {align} \ tag * {} [/ math]
Y sin embargo, otro enfoque 🙂
[matemáticas] \ begin {align} L & = \ lim_ \ limits {x \ to0} \ dfrac {\ cos2x- \ cos3x} {x ^ 2} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {\ cos2x-1 + 1- \ cos 3x} {x ^ 2} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {(1- \ cos 3x) – (1- \ cos 2x)} {x ^ 2} \\ & = \ lim_ \ limits {x \ to0} \ dfrac {2 \ sin ^ 2 \ dfrac {3x} 2} {x ^ 2} – \ dfrac {2 \ sin ^ 2x} {x ^ 2} \\ & = 2 \ left (\ lim_ \ limits {x \ to0} \ dfrac {\ sin \ dfrac {3x} 2} {x} \ right) ^ 2-2 \ left (\ lim_ \ limits {x \ to0 } \ dfrac {\ sin x} x \ right) ^ 2 \\ & = 2 \ left (\ dfrac32 \ cdot \ lim_ \ limits {x \ to0} \ dfrac {\ sin \ dfrac {3x} 2} {\ dfrac {3x} 2} \ right) ^ 2-2 \\ & = 2 \ cdot \ dfrac94-2 \\ & = \ dfrac92-2 \\ & = \ boxed {\ dfrac52} \ end {align} \ tag * { }[/matemáticas]