¿Cómo podemos derivar las ecuaciones geodésicas basadas en [matemática] t [/ matemática] a partir de las ecuaciones basadas en [matemática] \ tau [/ matemática]?

Comencemos con la ecuación geodésica:

[matemáticas] \ frac {\ mathrm {d} ^ 2 x ^ {\ mu}} {\ mathrm {d} \ tau ^ 2} = – \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac { \ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} \ tau} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} \ tau} [/ math]

Usando la regla de la cadena,

[math] \ frac {\ mathrm {d}} {\ mathrm {d} \ tau} \ left (\ frac {\ mathrm {d} x ^ {\ mu}} {\ mathrm {d} t} \ frac { \ mathrm {d} t} {\ mathrm {d} \ tau} \ right) + \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac {\ mathrm {d} x ^ {\ alpha}} { \ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} \ left (\ frac {\ mathrm {d} t} {\ mathrm {d} \ tau} \ right) ^ 2 = 0 [/ math]

En expansión, obtenemos,

[matemáticas] \ frac {\ mathrm {d} ^ 2 t} {\ mathrm {d} \ tau ^ 2} \ frac {\ mathrm {d} x ^ {\ mu}} {\ mathrm {d} t} + \ frac {\ mathrm {d} ^ 2 x ^ {\ mu}} {\ mathrm {d} t ^ 2} \ left (\ frac {\ mathrm {d} t} {\ mathrm {d} \ tau} \ derecha) ^ 2 + \ izquierda (\ frac {\ mathrm {d} t} {\ mathrm {d} \ tau} \ right) ^ 2 \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac {\ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} = 0 [/ math]

[matemática] \ left (\ frac {\ mathrm {d} ^ 2 x ^ {\ mu}} {\ mathrm {d} t ^ 2} + \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac {\ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} \ right) \ left ( \ frac {\ mathrm {d} t} {\ mathrm {d} \ tau} \ right) ^ 2 = – \ frac {\ mathrm {d} ^ 2 t} {\ mathrm {d} \ tau ^ 2} \ frac {\ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} t} [/ math]

Definición de [matemáticas] G ^ {\ mu} = \ frac {\ mathrm {d} ^ 2 x ^ {\ mu}} {\ mathrm {d} t ^ 2} + \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac {\ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} [ / matemáticas], obtenemos:

[matemáticas] G ^ {\ mu} = – \ left (\ frac {\ mathrm {d} \ tau} {\ mathrm {d} t} \ right) ^ 2 \ frac {\ mathrm {d} ^ 2 t} {\ mathrm {d} \ tau ^ 2} \ frac {\ mathrm {d} x ^ {\ mu}} {\ mathrm {d} t} [/ math]

Ahora, podemos usar el componente [math] 0 ^ {\ mathrm {th}} [/ math] de la ecuación geodésica ordinaria para encontrar el RHS (porque [math] x ^ 0 = t [/ math]).

[matemáticas] \ frac {\ mathrm {d} ^ 2 t} {\ mathrm {d} \ tau ^ 2} = – \ Gamma ^ {0} _ {\ beta \ gamma} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ gamma}} {\ mathrm {d} t} \ left (\ frac {\ mathrm {d} t} {\ mathrm {d} \ tau} \ right) ^ 2 [/ math]

Conectando esto nuevamente a la ecuación para [matemáticas] G ^ {\ mu} [/ matemáticas], obtenemos:

[matemáticas] G ^ {\ mu} = \ Gamma ^ {0} _ {\ beta \ gamma} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ gamma}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ mu}} {\ mathrm {d} t} [/ math]

y por lo tanto,

[matemáticas] \ frac {\ mathrm {d} ^ 2 x ^ {\ mu}} {\ mathrm {d} t ^ 2} = – \ Gamma ^ {\ mu} _ {\ alpha \ beta} \ frac {\ mathrm {d} x ^ {\ alpha}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ beta}} {\ mathrm {d} t} + \ Gamma ^ {0} _ {\ gamma \ delta} \ frac {\ mathrm {d} x ^ {\ gamma}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ delta}} {\ mathrm {d} t} \ frac {\ mathrm {d} x ^ {\ mu}} {\ mathrm {d} t} [/ math]