Esta es la clásica pregunta matemática del tipo “girar la manivela”. No quiero denigrarlo. Hay una cierta habilidad, es decir, dificultad, de simplemente tomar una lista de cosas y examinarla.
¿Cómo haces esta pregunta? No lo pienses demasiado. ¿Qué significa ser un grupo? Hay una operación binaria que satisface algunas propiedades. Encuentre una operación binaria en [math] H \ cap G [/ math] que tenga esas propiedades. (Sugerencia: la operación binaria que encuentre probablemente sea la única que se encuentre … la heredada de [math] G [/ math].)
Este problema no es difícil en el sentido de requerir creatividad. Pero puede ser difícil porque es muy evidente. Así que solo ve a través de los axiomas.
Solo para darle uno de ellos, demostrará que hay un elemento de identidad en [math] H \ cap G [/ math]. Llame a [math] e [/ math] el elemento de identidad del grupo [math] G [/ math]. Hay un elemento de identidad único en un grupo (pruebe esto si aún no lo ha hecho), y [matemáticas] H [/ matemáticas] es un subgrupo de [matemáticas] G [/ matemáticas], entonces [matemáticas] e \ en H [ /matemáticas]. Por lo tanto, [matemáticas] e \ en H \ cap G [/ matemáticas]. Además, si [matemática] h \ en H \ cap G [/ matemática], entonces necesariamente [matemática] eh = h [/ matemática]. ¿Por qué? Porque [matemática] eh = h [/ matemática] en [matemática] G [/ matemática], y [matemática] H [/ matemática] es un subgrupo de [matemática] G [/ matemática].
- ¿Por qué completar el cuadrado para x y dejar que sea cero nos da el valor máximo / mínimo de una función cuadrática? ¿Funciona para alguna otra función de grado superior?
- Si el enésimo término de un AP es 1 / my el enésimo término es 1 / n, demuestre que (mn) el término es 1?
- Como resolver esta ecuación
- Cómo resolver este límite [matemáticas] \ lim_ {x \ to0} \ frac {\ sqrt {1-3 ^ {- x ^ 2}}} {x} [/ matemáticas]
- ¿Por qué se eligió la raíz cuadrada de -1 para que sea igual a i? ¿No se pudo usar una raíz positiva como la cuarta raíz?
Haz este tipo de cosas con los otros axiomas grupales y listo. Casi puedes desconectar tu cerebro … lo que podría dificultarlo.