Integremos [math] \ int 12xe ^ {- 2x} dx [/ math]
Como tenemos un exponencial aquí, es bueno estar familiarizado con la regla de cómo integrar uno: [matemáticas] \ int e ^ {kx} dx = \ frac {1} {k} e ^ {kx} [/ matemáticas ]
Primero nos deshacemos de la constante: [matemáticas] 12 \ cdot \ int xe ^ {- 2x} dx [/ matemáticas]
Ahora de alguna manera necesitamos integrar el producto de [math] x [/ math] y [math] e ^ {- 2x}. [/ Math]
- Álgebra abstracta: por qué las pruebas y los problemas de la teoría de grupos no son tan intuitivos para mí. ¿Cómo debería abordarlo?
- ¿Es esta ecuación de álgebra inherentemente solucionable o insoluble? Si es solucionable, ¿qué tipo de programa de computadora podría resolverlo por mí?
- Si [matemáticas] \ cos \ frac {x} {2} \ cdot \ cos \ frac {x} {4} \ cdot \ cos \ frac {x} {8} \ cdots = \ frac {\ sin x} {x } [/ math], ¿cómo probamos [math] \ frac {1} {2 ^ 2} \ sec ^ 2 \ frac {x} {2} + \ frac {1} {2 ^ 4} \ sec ^ 2 \ frac {x} {4} + \ cdots = \ csc ^ 2 x- \ frac {1} {x ^ 2} [/ math]?
- ¿Podría decirme si cada problema cuya solución puede ser verificada por una computadora en tiempo polinómico puede ser resuelta por una computadora en tiempo polinómico?
- ¿Cuál es el comportamiento final de los polinomios? ¿Para qué necesitarías saber esto?
Eso nos apunta a la integración por partes (por partes), que se define como
[matemáticas] \ int u \ cdot v ‘dx = u \ cdot v – \ int u’ \ cdot v [/ math]
Entonces tenemos que elegir [math] u [/ math] y [math] v ‘. [/ Math]
Probemos [matemáticas] u = x [/ matemáticas] y [matemáticas] v ‘= e ^ {- 2x}. [/ Matemáticas] Entonces [matemáticas] v = \ frac {-1} {2} \ cdot e ^ { -2x}. [/matemáticas]
Entonces obtenemos:
[matemáticas] 12 \ int xe ^ {- 2x} dx = 12 (x \ cdot \ frac {-e ^ {- 2x}} {2} – \ int \ frac {-e ^ {- 2x}} {2} dx) [/ matemáticas]
Podemos sacar la [matemática] \ frac {-1} {2} [/ matemática] de la integral:
[matemáticas] 12 \ int xe ^ {- 2x} dx = -6 (x \ cdot e ^ {- 2x} – \ int e ^ {- 2x} dx) [/ math]
Desde aquí es casi trivial, solo aplicamos la regla para integrar el exponente y sumamos todo para obtener
[matemáticas] -6x e ^ {- 2x} – 3e ^ {- 2x} = -3 (2x + 1) e ^ {- 2x} [/ matemáticas]